풍산자 필수유형

미적분 I

필수유형 136개, 775문제

미적분 I

풍산자 필수유형

실전 문제 적응력을 키워 주는 정선된 유형서

엄선된 유형 문제로 유사 유형도 술술 풀리는 비법서

유형별 명확한 해법이 제시된 해설서

머리말

고등학교 수학의 내신이나 수능 기출 문제 중에는 무척 어렵게 느껴지는 문제들이 많지만 이 문제들은 모두 교과 과정의 개념에서 파생된 문제입니다. 문제를 척 보면

아하! 이것은 무엇을 묻는 문제이구나!

하고 바로 간파할 수 있을까요?

그럴 수 있어야 합니다.

고등학교 수학 문제는 수없이 많지만, 그 기저에는 뼈대가 되는 기본 문제 유형이 있습니다. 이 기본 문제 유형을 정복하는 것이 수학 문제 정복의 열쇠입니다.

- 어려운 문제처럼 보이지만 한 단계만 해결하면 쉬운 문제로 변신하는 문제가 있습니다.
- 낯선 문제처럼 보이지만 한 꺼풀만 벗기면 익숙한 문제로 바뀌는 문제가 있습니다.
- 겉모양은 전혀 다른데 본질을 파악하면 사실상 동일한 문제가 있습니다.

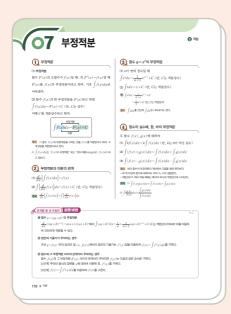
가면을 쓰고 다른 문제인 척 가장할 때 속아 넘어가지 않으려면 어떻게 해야 할까요?

풍산자 필수유형은 어려운 문제를 쉬운 문제로, 낯선 문제를 익숙한 문제로 바꾸는 능력을 기를 수 있도록 구성한 문제 기본서로, 세상의 모든 수학 문제를 유형별로 정리하고 분석하여 그 뼈대가 되는 문제들로 구성하였습니다.

몇천 문항씩 되는 많은 문제를 두서없이 풀기보다는 뼈대 문제를 완벽히 이해하고 푼다면 어떠한 수학 문제를 만나도 당당하게 맞설 수 있는 수학의 고수로 다시 태어날 것입니다.

구성과 특징

꼭 필요한 유형으로만 꽉 채운 **풍산자 필·수·유·형**



핵심 내용 정리

중단원별로 꼭 알아야 하는 개념을 간단하고 명쾌하게 정리하였으며, 예, 참고, 주의 등으로 개념을 쉽게 이해할 수 있도록 하였습니다.

문제를 풀 때 유용한 풍쌤 비법

핵심 내용과 연계되어 문제 풀이에 자주 이용되는 개념과 그 개념을 문제에 적용하는 방법 등을 소개하고 이를 활용할 수 있도록 하였습니다.

실력을 기르는 유형

학습에 필요한 문제들을 유형별로 나누고 유형별 중요도와 문항별 난이 도를 제시하여 학습 수준에 맞추어 충분한 연습을 할 수 있도록 구성하였습니다.

, 내신기출 , 학교 기출 문제 중 자주 출제되는 유형의 문제입니다.

수능 기출 평가원 기출 교육청 기출

수능 기출 문제와 평가원, 교육청의 학력평가 기출 문제 중 자주 출제되는 유형의 문제입니다.



내신을 꽉 잡는 서술형

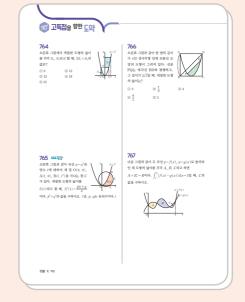
핵심적이고 출제 빈도가 높은 서술형 기출 문제로 구성하여 서술형 내신 평가에 대비할 수 있도록 하였습니다.

고득점을 향한 도약

난이도가 높고, 출제 비중이 높은 문제로 구성하여 수학적 사고력과 응용력을 기를 수 있도록 하였습니다.

도전! 1등급

사고력을 키우고 내신 고득점을 대비할 수 있는 고난도 문제입니다.



정답과 풀이

자세하고 친절한 풀이와 다른 풀이로 문제의 출제 의도와 다양한 해결 방향을 이해할 수 있도록 하였습니다.

차례

Ⅰ │ 함수의 극한과 연속

01. 함수의 극한	006
02. 함수의 연속	022

03. 미분계수와 도함수	038
04. 도함수의 활용(1)	056
05. 도함수의 활용(2)	072
06. 도함수의 활용(3)	091

적분

07. 부정적분	110
 08. 정적분	124
09. 정적분의 활용	146

함수의 극한과 연속

01. 함수의 극한 | 006 02. 함수의 연속 | 022

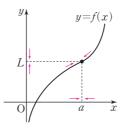
이 함수의 극한

1 함수의 수렴과 발산

(1) 함수의 수렴

함수 f(x)에서 x의 값이 a가 아니면서 a에 한없이 가까워질 때,

f(x)의 값이 일정한 값 L에 한없이 가까워지면 함수 f(x)는 L에 수렴한다고 한다. 이때 L을 $x\!=\!a$ 에서의 함수 f(x)의 극한값 또는



극한이라고 하며, 기호로 다음과 같이 나타낸다.

 $\lim_{x\to a} f(x) = L$ 또는 $x \longrightarrow a$ 일 때 $f(x) \longrightarrow L$

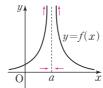
참고 $x \longrightarrow a$ 는 x의 값이 a가 아니면서 a에 한없이 가까워짐을 뜻한다.

(2) 함수의 발산

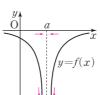
f(x)의 값이 어느 값으로도 수렴하지 않으면 함수 f(x)는 발산하다고 한다.

함수 f(x)에서 x의 값이 a가 아니면서 a에 한없이 가까워 \mathbf{A} 때

① f(x)의 값이 한없이 커지면 함수 f(x)는 양의 무한대로 발산한다고 하며, 기호로 다음과 같이 나타낸다.



② f(x)의 값이 음수이면서 그 절댓값이 한없이 커지면 함수 f(x)는 음의 무한대로 발산한다고 하며, 기호로 다음과 같이 나타낸다.



 $\lim_{x \to a} f(x) = -\infty$

 $--\infty$ 는 음수이면서 그 절댓값이 한없이 커지는 상태 를 나타내는 기호로, 음의 무한대라고 읽는다.

또는 $x \longrightarrow a$ 일 때 $f(x) \longrightarrow -\infty$

 $rac{\mbox{\ensuremath{\text{\bf ku}}}}{\mbox{\ensuremath{\text{ab}}}}$ 함수의 수렴과 발산은 $x \longrightarrow -\infty$, $x \longrightarrow -\infty$ 인 경우에도 정의할 수 있다.

2 좌극한과 우극한

(1) 좌극한

함수 f(x)에서 x의 값이 a보다 작으면서 a에 한없이 가까워질 때, f(x)의 값이 일정한 값 L에 한없이 가까워지면 L을 x=a에서의 함수 f(x)의 좌극한이라고 하며, 기호로 다음과 같이 나타낸다.

 $\lim_{x \to a} f(x) = L$ 또는 $x \longrightarrow a -$ 일 때 $f(x) \longrightarrow L$

참고 x의 값이 a보다 작으면서 a에 한없이 가까워지는 것을 기호 $x \longrightarrow a -$ 로 나타낸다.

(2) 우극한

함수 f(x)에서 x의 값이 a보다 크면서 a에 한없이 가까워 질 때, f(x)의 값이 일정한 값 M에 한없이 가까워지면 M을 x=a에서의 함수 f(x)의 우극한이라고 하며, 기호로 다음과 같이 나타낸다.

 $\lim_{x \to a} f(x) = M$ 또는 $x \longrightarrow a +$ 일 때 $f(x) \longrightarrow M$

참고 x의 값이 a보다 크면서 a에 한없이 가까워지는 것을 기호 $x \longrightarrow a+$ 로 나타낸다.

(3) 극한값의 존재

x=a에서의 함수 f(x)의 극한값이 L이면 x=a에서의 좌 극한과 우극한이 각각 존재하고 그 값이 모두 L로 같다. 역으로 x=a에서의 함수 f(x)의 좌극한과 우극한이 각각 존재하고 그 값이 모두 L로 같으면 x=a에서의 함수 f(x)

의 극한값은 L이다. 즉, $\lim f(x) = L \iff \lim f(x) = \lim f(x) = L$

참고 x=a에서의 함수 f(x)의 함숫값이 존재하지 않아도 x=a에서의 극한값이 존재할 수 있고, x=a에서의 함숫값이 존재하더라도 x=a에서의 극한 값은 다를 수 있다. $y \neq y=f(x)$

예를 들어 함수
$$f(x) = \begin{cases} x+2 & (x \neq 0) \\ 1 & (x=0) \end{cases}$$
에서

f(0) = 10|지만 $\lim_{x \to 0} f(x) = 20$ |므로

 $f(0) \neq \lim_{x \to 0} f(x)$ 이다.

문제를 풀 때 유용한 풍쌤 비법

① 함수 f(x)의 극한값의 존재를 확인하는 방법

[1단계] 함수 f(x)의 좌극한과 우극한을 조사한다.

[2단계] ① 좌극한과 우극한이 각각 존재하고 그 값이 서로 같으면 함수 f(x)의 극한값은 존재한다.

② 좌극한과 우극한 중 적어도 하나가 존재하지 않거나 좌극한과 우극한이 모두 존재하지만 그 값이 다르면 함수 f(x)의 극한 값은 존재하지 않는다.

⑥ 실력을 _{기르는} 유형

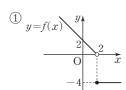
함수의 극한값의 존재

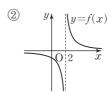
중요도

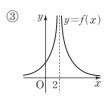
○○1 풍쌤 비법 **②**

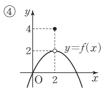
상중하

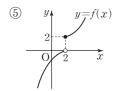
함수 y = f(x)의 그래프가 다음과 같을 때, $\lim_{x \to a} f(x)$ 의 값이 존재하는 것은?











004

003

는 것은?

상중하

(상 중 하

함수 f(x) = $\begin{cases} x+2 & (|x| \ge 2) \\ x^2+2x & (|x| < 2) \end{cases}$ 에 대하여 $\lim_{x \to a} f(x)$ 의 값이 존재하지 않도록 하는 실수 a의 값을 구하시오.

다음 함수 f(x) 중에서 $\lim_{x \to \infty} f(x)$ 의 값이 존재하지 않

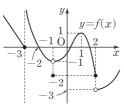
① $f(x) = \begin{cases} x & (x < 1) \\ 1 & (x \ge 1) \end{cases}$ ② $f(x) = \begin{cases} -1 & (x < 1) \\ 2 - x & (x \ge 1) \end{cases}$ ③ f(x) = |x - 1| ④ $f(x) = \begin{cases} -x^2 & (x < 1) \\ x - 2 & (x \ge 1) \end{cases}$

 $(5) f(x) = \begin{cases} -x^2 + 2x & (x < 1) \\ x^2 - 2x + 2 & (x \ge 1) \end{cases}$

002

상중하

함수 y = f(x)의 그래프가 오른 쪽 그림과 같을 때, (보기)에서 극한값이 존재하는 것만을 있는 대로 고른 것은?



-(보기)----

 $\neg \lim_{x \to -3} f(x)$

 $-\lim_{x\to -1} f(x)$

 $\exists \lim_{x \to 1} f(x)$ $\exists \lim_{x \to 2} f(x)$

① 7, L ② 7, E ③ L, E

④ ㄴ, ㄹ ⑤ ㄷ, ㄹ

005 내신기출

상중하

함수 $f(x) = \left\{ egin{array}{ll} 2x^2 - 1 & (x < -1) \\ -x^2 + a & (-1 \le x < 1) \\ b & (x \ge 1) \end{array} \right.$

k에 대하여 $\lim_{x \to a} f(x)$ 의 값이 존재할 때, a+b의 값은? (단, a, b는 상수이다.)

③ 0

 $\bigcirc -3$

(4) 1

(5) 3

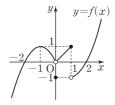
(LII신을 꽉잡는 **서술형**

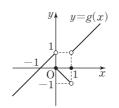
064

함수 $f(x) = \begin{cases} (x-2a)^2 & (x<4) \\ ax-9 & (x\geq 4) \end{cases}$ 에 대하여 $\lim_{x\to 4} f(x)$ 의 값이 존재하도록 하는 상수 a의 값을 구하시오.

065

두 함수 y=f(x), y=g(x)의 그래프가 다음 그림과 같을 때, $\lim_{x\to 0} f(x)g(x) + \lim_{x\to 1} \{f(x) + g(x)\}$ 의 값을 구하시오.





066

두 극한값

$$A=\lim_{x\to 1}rac{|x^2+x|-2}{x-1},\ B=\lim_{x\to 3}[\,-x^2+6x-9\,]$$
에 대하여 $A+B$ 의 값을 구하시오.

(단, [x]는 x보다 크지 않은 최대의 정수이다.)

067

 $\lim_{x\to 2^{-}}\frac{x^{2}-2x}{|x^{2}-4|}=a,\ \lim_{x\to 0^{+}}\frac{3x+|x|}{x}=b$ 라고 할 때, 상수 a,b에 대하여 ab의 값을 구하시오.

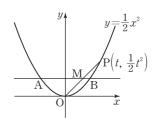
068

다항함수 f(x)가 다음 조건을 만족시킬 때, af(3)의 값을 구하시오. (단, a는 상수이다.)

$$\text{(i) } \lim_{x \to \infty} \frac{f(x) - x^2}{ax + 1} = 2 \qquad \text{(ii) } \lim_{x \to 1} \frac{x - 1}{f(x)} = \frac{1}{4}$$

069

오른쪽 그림과 같이 곡선 $y=\frac{1}{2}x^2$ 위의 점 $P\left(t,\,\frac{1}{2}t^2\right)$ 과 원점 O에 대하여 선분 OP — 의 중점을 M이라고 하자. 점 — M을 지나면서 x축에 평행한



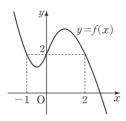
직선이 곡선 $y=\frac{1}{2}x^2$ 과 만나는 두 점을 각각 A, B라고할 때, $\lim_{t\to 0^+}\frac{\overline{AB}}{\overline{OP}}$ 의 값을 구하시오. $(단,\,t>0)$

☑ 고득점을 향한 도약

070

오른쪽 그림과 같이 삼차함수 y = f(x)7

f(-1) = f(0) = f(2) = 2를 만족시킬 때, (보기)에서 극 한값이 존재하는 것만을 있는 대 로 고른 것은?



-(보기)-

$$\neg . \lim_{x \to 2} \frac{x - 2}{f(x) - 2} \qquad \qquad \bot . \lim_{x \to 2} \frac{f(x) - 2}{f(x - 2)}$$

$$-\lim_{x\to 2} \frac{f(x)-2}{f(x-2)}$$

$$\exists \lim_{x \to 2} \frac{f(x-2)}{x-2}$$

- ① ¬
- ② **C**
- ③ 7. ∟

- 4 L, E 5 ٦, L, E

071

x>-2에서 정의된 함수

$$f(x) = \min(x, 2) - \frac{x}{x+2}$$

에 대하여 $\lim_{x\to 2^-} \frac{f(x)-f(2)}{x-2} - \lim_{x\to 2^+} \frac{f(x)-f(2)}{x-2}$ 의 값 은? (단, min(a, b)는 두 수 a, b 중에서 크지 않은 수 이다.)

- ① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ $\frac{3}{4}$
- 41 $5\frac{5}{4}$

072

이차함수 f(x)가 임의의 실수 x에 대하여

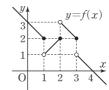
$$f(2-x) = f(2+x)$$

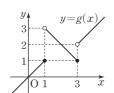
를 만족시킨다. f(x)의 최댓값이 5일 때, $\lim_{x\to 0} [f(x)]$ 의 값을 구하시오.

(단, [x] 는 x보다 크지 않은 최대의 정수이다.)

073

두 함수 y=f(x), y=g(x)의 그래프가 다음 그림과 같 을 때, $\lim_{x\to\infty}f\Big(\frac{3x-4}{x-1}\Big)+\lim_{x\to 2+}f(g(x))$ 의 값을 구하시오.





074 EN ISE

다음 조건을 만족시키는 실수 p, q의 모든 순서쌍 (p, q)의 개수를 구하시오.

(7))
$$\lim_{x\to 2} \frac{x-2}{x^2-b} = q$$

(나)
$$\lim_{x\to 0}\left|\frac{x^3+px^2+qx}{x^n}\right|=\frac{1}{4}$$
인 자연수 n 이 존재한다.

Ⅱ 》 함수의 극한과 연속

Y O1 함수의 극한

001

- ① $\lim_{x\to 2^-}f(x)=0$, $\lim_{x\to 2^+}f(x)=-4$ 즉, $\lim_{x\to 2^-}f(x)\neq \lim_{x\to 2^+}f(x)$ 이므로 $\lim_{x\to 2}f(x)$ 의 값은 존재하지 않는다.
- ② $\lim_{x\to 2^-}f(x)=-\infty$, $\lim_{x\to 2^+}f(x)=\infty$ 이므로 $\lim_{x\to 2}f(x)$ 의 값은 존재하지 않는다.
- ③ $\lim_{x\to 2^-}f(x)=\infty$, $\lim_{x\to 2^+}f(x)=\infty$ 이므로 $\lim_{x\to 2}f(x)$ 의 값은 존재하지 않는다.
- ④ $\lim_{x\to 2^-} f(x) = 2$, $\lim_{x\to 2^+} f(x) = 2$ 이므로 $\lim_{x\to 2} f(x) = 2$
- ⑤ $\lim_{x\to 2^-}f(x)=0$, $\lim_{x\to 2^+}f(x)=2$ 즉, $\lim_{x\to 2^-}f(x)\neq\lim_{x\to 2^+}f(x)$ 이므로 $\lim_{x\to 2}f(x)$ 의 값은 존재하지 않는다.

따라서 $\lim_{x\to 0} f(x)$ 의 값이 존재하는 것은 ④이다.

정답_ ④

002

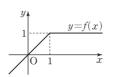
- ㄱ. $\lim_{x \to -3-} f(x) = 0$, $\lim_{x \to -3+} f(x) = \infty$ 이므로 $\lim_{x \to -3} f(x)$ 의 값은 존재하지 않는다.
- ㄴ. $\lim_{x \to -1^-} f(x) = -1$, $\lim_{x \to -1^+} f(x) = -1$ 이므로 $\lim_{x \to -1} f(x) = -1$
- 다. $\lim_{x\to 1^-}f(x)=1$, $\lim_{x\to 1^+}f(x)=1$ 이므로 $\lim_{x\to 1}f(x)=1$
- 르. $\lim_{x\to 2^-}f(x)\!=\!-2$, $\lim_{x\to 2^+}f(x)\!=\!-3$ 즉, $\lim_{x\to 2^-}f(x)\!\neq\!\lim_{x\to 2^+}f(x)$ 이므로 $\lim_{x\to 2}f(x)$ 의 값은 존재하지 않는다.

따라서 극한값이 존재하는 것은 ㄴ, ㄷ이다.

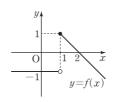
정답 ③

003

① 함수 y=f(x)의 그래프는 오른쪽 그림 과 같으므로 $\lim_{x\to\infty} f(x)=1$



② 함수 y=f(x)의 그래프는 오른쪽 그림과 같으므로 $\lim_{x\to 1^-} f(x)\!=\!-1, \lim_{x\to 1^+} f(x)\!=\!1$ 즉, $\lim_{x\to 1^+} f(x)\!\neq\!\lim_{x\to 1^+} f(x)$ 이므로 $\lim_{x\to 1^+} f(x)$ 의 값은 존재하지 않는다.

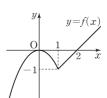


③ $f(x) = \begin{cases} -x+1 & (x < 1) \\ x-1 & (x \ge 1) \end{cases}$ 에서 함수

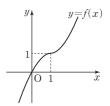
y=f(x)의 그래프는 오른쪽 그림과 같으므로

 $\lim_{x \to 1} f(x) = 0$

④ 함수 y=f(x)의 그래프는 오른쪽 그림 과 같으므로 $\lim_{x\to\infty}f(x)=-1$



⑤ 함수 y=f(x)의 그래프는 오른쪽 그림 과 같으므로 $\lim_{x\to\infty} f(x)=1$



따라서 $\lim_{x \to \infty} f(x)$ 의 값이 존재하지 않는 것은 2이다.

정답_ ②

y=f(x)

004

$$f(x) = \begin{cases} x+2 & (|x| \ge 2) \\ x^2 + 2x & (|x| < 2) \end{cases}$$
$$= \begin{cases} x+2 & (x \le -2 \ £ = x \ge 2) \\ x^2 + 2x & (-2 < x < 2) \end{cases}$$

이므로 함수 y=f(x)의 그래프는 오른쪽 그림과 같다.

이때 $\lim_{x\to 2^-} f(x) = 8$, $\lim_{x\to 2^+} f(x) = 4$, 즉

 $\lim_{x\to 2^-} f(x) \neq \lim_{x\to 2^+} f(x)$ 이므로 $\lim_{x\to 2} f(x)$ 의 값은 존재하지 않는다.

따라서 $\lim_{x\to a} f(x)$ 의 값이 존재하지 않도록 하는 실수 a의 값은 2이다.

정답_ 2

005

함수 f(x)가 임의의 실수 k에 대하여 $\lim_{x\to k}f(x)$ 의 값이 존재하므로 $\lim_{x\to k}f(x)$, $\lim_{x\to k}f(x)$ 의 값이 존재한다.

(i) $\lim_{x \to 0} f(x)$ 의 값이 존재하므로

$$\lim_{x \to -1-} f(x) = \lim_{x \to -1-} (2x^2 - 1) = 1$$

$$\lim_{x \to -1+} f(x) = \lim_{x \to -1+} (-x^2 + a) = -1 + a$$
 에서

1 = -1 + a $\therefore a = 2$

(ii) $\lim_{x \to \infty} f(x)$ 의 값이 존재하므로

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x^{2} + a) = -1 + a$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} b = b$$
od k

-1+a=b $\therefore b=1 \ (\because a=2)$

(i), (ii)에서 a=2, b=1이므로

a+b=2+1=3

정답_ ⑤

풍안까 필수유형

미적분 I

지학사는 좋은 책을 만들기 위해 최선을 다합니다.

완벽한 교재를 위한 노력

- •도서 오류 신고는 「홈페이지 〉 참고서 〉 해당 참고서 페이지 〉 오류 신고」 에서 하실 수 있습니다.
- 발간 이후에 발견되는 오류는 「홈페이지 〉 참고서 〉 학습 자료실 〉 정오표」 에서 알려드립니다.

고객 만족 서비스

•홈페이지에 문의하신 사항에 대한 답변이 등록되면 수신 체크가 되어 있는 경우 문자 메시지가 발송됩니다.

지은이 풍산자수학연구소

개발 총괄 오세중

개발 책임 김경수 | **편집** 유미현, 문상우, 이다은, 석혜영, 손동국, 배예지, 이도희, 이지은, 김예지, 이승현

영업 마케팅 최규명, 김혁래, 이상헌, 김윤제, 문조윤

마케팅 이혁주, 이상무, 유은영, 김규리, 김윤희

디자인 책임 김의수 | 표지 디자인 이창훈, 한강산 | 본문 디자인 류은경 컷 남양프로세스 | 조제판 남양프로세스 | 인쇄 제본 벽호

발행인 권준구 | **발행처** (주)지학사 (등록번호 : 1957.3.18 제 13-11호)

04056 서울시 마포구 신촌로6길 5

발행일 2010년 10월 30일[초판 1쇄] 2025년 10월 20일[9판 1쇄]

구입 문의 TEL 02-330-5300 | FAX 02-325-8010

구입 후에는 철회되지 않으며, 잘못된 제품은 구입처에서 교환해 드립니다.

내용 문의 www.jihak.co.kr 전화번호는 홈페이지 〈고객센터 → 담당자 안내〉

이 책에 대한 저작권은 (주)지학사에 있습니다.

(주)지학사의 서면 동의 없이는 이 책의 체재와 내용 중 일부나 전부를 모방 또는 복사, 전재할 수 없습니다.

정가 17,000원

ISBN 978-89-05-05828-9

새 교육과정 고등 풍산자 1등급 로드맵 중 상 풍안작 기초 반복수학 학습 개념 및 기본 연산 정복, 기본 실력 완성 풍안자 필수 문제로 개념 정복, 개념 학습 완성 풍안자 라이트 기본 및 대표 유형 연습, 중위권 실력 완성 유형 유형서 풍안자 필수유형 기출 문제로 유형 정복, 시험 준비 완료 새 교육과정은 2025년 고1부터 적용됩니다.