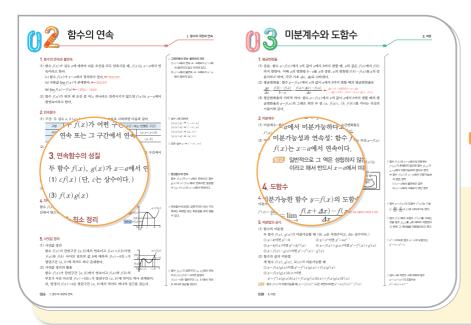


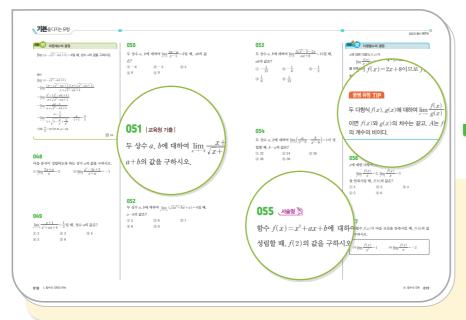
풍 만 함 위 의

미적분 I

구성과 특징

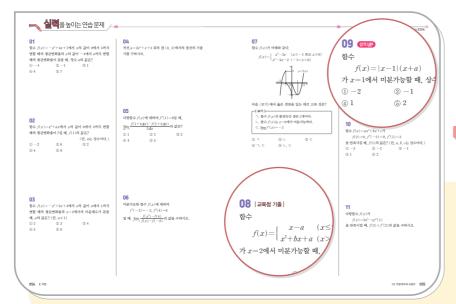


- 이해하기 쉽고, 명확하고 자세한개념 정리
- 상세한 설명과 참고, 예, 주의 를 제시하여
 확실한 개념 이해
- 배울 개념과 함께 이전에 배운 내용도 확인 하며 개념 학습 완성



- ► 문제 해결의 기초부터 다져서 점수를 높이는
 유형 학습
- •꼭 알아야 할 기본 문제 학습
- 발전 유형의 접근 방법을 제시한 중품 유형 TIP
- •실제 시험 문제를 분석, 제시한 <u>서술형 🎘</u> |교육청기출|, | 평가원기출|, | 수능기출|

실전 유형을 조금 더 쉽고 가볍게 익히자. 확실하게 개념을 잡고, 유형을 연습하여 실력을 올려요!



▶ 다양한 유형의 문제로 실력을 높이는연습 문제

- 엄선된 유형의 문제로 구성
- 기본 유형을 발전시킨 응용 문제 실력 UP
- 문제 해결력을 기르는 다양하고 엄선된 기출 문제 |교육청기출|, |평가원기출|, |수능기출|

►문제해결 과정이 보이는 명쾌한
정답과 풀이

- 자주 나오고 꼭 알아야 하는 선수 학습 개념을 풍쌤 대로 CHECK 로 설명
- 문제의 해결력을 높이는 문제 접근하기
- 다양한 해결 방향을 제시한 다른 풀이

차례

Ⅰ. 함수의 극한과 연속

01. 함수의 극한	
기본을 다지는 유형	009
실력을 높이는 연습 문제	022
02. 함수의 연속	
기본을 다지는 유형	027
실력을 높이는 연습 문제	035

Ⅱ . 미분

00 미터레스이 드라스	
03. 미분계수와 도함수	
기본을 다지는 유형	039
실력을 높이는 연습 문제	054
04. 도함수의 활용 (1)	
기본을 다지는 유형	059
실력을 높이는 연습 문제	069
05. 도함수의 활용 (2)	
기본을 다지는 유형	073
실력을 높이는 연습 문제	088
06. 도함수의 활용 (3)	
기본을 다지는 유형	093
실력을 높이는 연습 문제	105

Ⅲ. 적분

07. 부정적분	
기본을 다지는 유형	111
실력을 높이는 연습 문제	121
08. 정적분	
기본을 다지는 유형	125
실력을 높이는 연습 문제	135
09. 정적분의 활용	
기본을 다지는 유형	139
실력을 높이는 연습 문제	150

풍산자 라이트유형

기초를 다지는 유형 집중 학습에 적합한 구성

- 개념을 바로 적용할 수 있는 연산 문제 및 기출 문제의 기본 유형 제시
- 기본 유형을 충분히 연습할 수 있도록 일반 유형서의 유형을 세분화

2 최신 경향 분석으로 내신과 학력평가 대비

- 내신과 학력평가의 최신 경향을 분석하여 출제 빈도가 높은 문제들로 구성
- 출제 빈도가 높은 서술형 문제 제시로 서술형 평가 대비에 적합
- 최신 기출 문제 연습으로 실전 감각을 키우고 자신감을 높임

중상위권 도약을 위한 최적의 유형 연습용 교재

- 깔끔하지만 부족함이 없는 개념 설명과 유형 연습에 적합한 세분화된 유형 분류
- 문제 출제 원리에 부합한 유형과 문제 해결 TIP으로 문제 적용력과 해결력 강화

매일 매순간 나아가는 사람이 진정한 승자가 된다.

함수의 극한과 연속

01. 함수의 극한

02. 함수의 연속

함수의 극한

1. 함수의 극한

함수 f(x)에서 x의 값이 a가 아니면서 a에 한없이 가까워질 때

- (1) f(x)의 값이 일정한 값 L에 한없이 가까워지면 함수 f(x)는 L에 수렴한다고 한다. 이때 L을 함수 f(x)의 x=a에서의 극한값 또는 극한이라고 하며, 기호 $\lim_{x\to a} f(x) = L$ 또는 $x \longrightarrow a$ 일 때 $f(x) \longrightarrow L$ 로 나타낸다.
- (2) f(x)의 값이 수렴하지 않으면 함수 f(x)는 발산한다고 한다.

2. 좌극한과 우극한

- (1) 함수 f(x)에서 $x \longrightarrow a-$ 일 때 f(x)의 값이 일정한 값 α 에 한없이 가까워지면 α 를 함수 f(x)의 x=a에서의 좌극한이라고 하며, 기호 $\lim_{x \to a} f(x) = \alpha$ 로 나타낸다.
- (2) 함수 f(x)에서 $x \longrightarrow a+$ 일 때 f(x)의 값이 일정한 값 β 에 한없이 가까워지면 β 를 함수 f(x)의 x=a에서의 우극한이라고 하며, 기호 $\lim_{x\to a^+} f(x)=\beta$ 로 나타낸다.

3. 함수의 극한에 대한 성질

두 함수 f(x), g(x)에서 $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$ (L, M은 실수)일 때

- (1) $\lim_{x\to a} cf(x) = c\lim_{x\to a} f(x) = cL$ (단, c는 상수이다.)
- (2) $\lim_{x \to a} \{f(x) \pm g(x)\} = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x) = L \pm M$ (복호동순)
- (3) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \times \lim_{x \to a} g(x) = LM$
- (4) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \frac{L}{M}$ (단, $M \neq 0$)

▲ 함수의 극한값의 계산

- (1) $\frac{0}{0}$ 의 꼴: 분자, 분모가 모두 다항식인 경우에는 분자, 분모를 모두 인수분해한 후 약분하고, 분자, 분모 중 무리식이 있으면 근호가 있는 쪽을 유리화한 후 약분한다.
- (2) $\frac{\infty}{\infty}$ 의 꼴: 분모의 최고차항으로 분자, 분모를 각각 나눈다.
- (3) ∞ ∞의 꼴: 다항식은 최고차항으로 묶고, 무리식은 근호가 있는 쪽을 유리화한다.

5. 미정계수의 결정

두 함수 f(x), g(x)에 대하여

- (1) $\lim_{x \to a} \frac{f(x)}{g(x)} = L$ (L은 실수)이고 $\lim_{x \to a} g(x) = 0$ 이면 $\lim_{x \to a} f(x) = 0$ 이다.
- (2) $\lim_{x \to a} \frac{f(x)}{g(x)} = L$ (L은 0이 아닌 실수)이고 $\lim_{x \to a} f(x) = 0$ 이면 $\lim_{x \to a} g(x) = 0$ 이다.

6. 함수의 극한의 대소 관계

두 함수 f(x), g(x)에서 $\lim_{x\to a}f(x)=L$, $\lim_{x\to a}g(x)=M$ (L,M은 실수)일 때, a에 가까운 모든 실수 x에 대하여

- (1) $f(x) \leq g(x)$ 이면 $L \leq M$ 이다.
- (2) 함수 h(x)가 $f(x) \le h(x) \le g(x)$ 이고 L=M이면 $\lim_{x\to a} h(x) = L$ 이다.

후 함수 f(x) = c (c는 상수)에 대하여 $\lim_{x \to c} f(x) = \lim_{x \to c} c = c$

🔅 발산

- (1) 양의 무한대로 발산 $\lim_{x\to a} f(x) = \infty$
- (2) 음의 무한대로 발산 $\lim_{x\to a} f(x) = -\infty$
- 한 함수 f(x)의 x=a에서의 극한값이 L이 면, x=a에서의 좌극한과 우극한이 각각 존재하고 그 값이 모두 L로 같다. $\lim_{x\to a} f(x) = L$ $\iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$

🜣 극한값의 존재

좌극한과 우극한이 모두 존재하더라도 그 값이 서로 다르면 극한값은 존재하지 않는다.

함수의 극한에 대한 성질은
 (1) 극한값이 존재할 때에만 성립한다.
 (2) x → a - , x → a + , x → ∞,
 x → -∞인 경우에도 성립한다.

○ × 0의 꼴

통분 또는 유리화하여 $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\infty \times (00)$ 이닌 상수), $\frac{(상수)}{\infty}$ 의 꼴로 변형하다

- $x \longrightarrow a$ 일 때
 - (1) 극한값이 존재하고
 (분모) → 0이면 (분자) → 0이다.
 (2) 0이 아닌 극한값이 존재하고
 (분자) → 0이면 (분모) → 0이다.
- 한 함수의 극한의 대소 관계는 $x \longrightarrow a-$, $x \longrightarrow a+$, $x \longrightarrow \infty$, $x \longrightarrow -\infty$ 인 경우에도 성립한다.

기본을다지는유형

유형 []1 간단한 함수의 극한

 $A = \lim_{x \to 2} (x^2 + 2)$, $B = \lim_{x \to -1} (-2x + 1)$ 이라고 할 때, A-B의 값을 구하시오.

$$A = \lim_{x \to 2} (x^2 + 2) = 2^2 + 2 = 6$$

$$B = \lim_{x \to -1} (-2x+1) = (-2) \times (-1) + 1 = 3$$

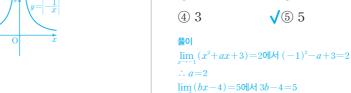
$$A - B = 6 - 3 = 3$$

3

001

다음 극한을 그래프를 이용하여 조사하시오.

- (1) $\lim x \sim$
- (2) $\lim x^2 \infty$
- (3) $\lim_{x \to -\infty} \frac{1}{x}$ o
- (4) $\lim_{x \to \infty} \left| -\frac{1}{x} \right| \mathbf{0}$



002

다음 극한값을 구하시오.

- (1) $\lim_{x \to 0} (x^2 + 3)$ 7
- (2) $\lim_{x \to 3} \sqrt{2x+3}$ 3
- (3) $\lim_{x \to -1} (x x^3)$ 0 (4) $\lim_{x \to \sqrt{2}} \frac{6}{r^2}$ 3

- (1) $\lim_{x \to 2} (x^2 + 3) = 2^2 + 3 = 7$
- (2) $\lim_{x \to 2} \sqrt{2x+3} = \sqrt{2 \times 3 + 3} = \sqrt{9} = 3$
- (3) $\lim_{x \to -1} (x-x^3) = \{-1-(-1)^3\} = 0$
- (4) $\lim_{x \to \sqrt{2}} \frac{6}{x^2} = \frac{6}{(\sqrt{2})^2} = 3$

003

 $\lim_{x \to -3} \frac{4}{x+1} + \lim_{x \to 3} \frac{x+1}{4}$ 의 값은?

- $\bigcirc -3$
- (2) -2
- $\sqrt{3} 1$

- (4) 0
- (5) **1**

$$\lim_{x \to -3} \frac{4}{x+1} + \lim_{x \to 3} \frac{x+1}{4} = \frac{4}{-3+1} + \frac{3+1}{4}$$
$$= -2+1 = -1$$

004 |평가원 기출|

 $\lim_{x\to 3}\frac{x^3}{x-2}$ 의 값을 구하시오. 27

$$\lim_{x \to 3} \frac{x^3}{x - 2} = \frac{3^3}{3 - 2} = 27$$

005

 $\lim_{x \to -1} (x^2 + ax + 3) = 2$, $\lim_{x \to -2} (bx - 4) = 5$ 일 때, 상수 a,

b에 대하여 a+b의 값은?

- $\bigcirc 1$
- 20

3 1

b=3

a+b=2+3=5

006 시술형 🕅

 $\lim_{x\to a} (x^2-2x+4)=3$, $\lim_{x\to b} (x^2-4)=12$ 일 때, ab의 최

댓값을 구하시오. 4

 $\lim_{x\to a} (x^2 - 2x + 4) = 30$ | $\lim_{x\to a} (x^2 - 2x + 4) = 30$

 $(a-1)^2=0$

∴ *a*=1 ······ $\lim_{x \to 0} (x^2 - 4) = 12$ 에서 $b^2 - 4 = 12$

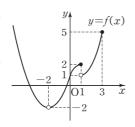
 $b^2 = 16$

∴ b=-4 또는 b=4 ······ 따라서 a=1, b=4일 때, ab는 최댓값 4를 갖는다. ------

력을높이는연습문제

01

함수 y=f(x)의 그래프가 오른 쪽 그림과 같을 때, 다음 |보기| 에서 극한값이 존재하는 것만을 있는 대로 고른 것은?



│ 보기 ├

$$\neg \lim_{x \to -2} f(x)$$

$$\mathsf{L.} \lim_{x \to 1} f(x)$$

$$\Box \lim_{x \to 3-} f(x)$$

 \bigcirc

۵) L, ت

풀이

 $\neg \lim_{x \to -2} f(x) = -2$

-. $\lim_{x\to 1^{-}} f(x) \neq \lim_{x\to 1^{+}} f(x)$ 이므로 $\lim_{x\to 1} f(x)$ 의 값은 존재하지 않는다.

 $\sqsubseteq \lim_{x \to 2^{-}} f(x) = 5$

02

함수 f(x) = $\begin{cases} -3x - 4 & (x < a) \\ 2x + 1 & (x \ge a) \end{cases}$ 에 대하여 $\lim_{x \to a} f(x)$ 의

값이 존재하도록 하는 실수 a의 값은?

(1) - 3

$$(2) -2$$

$$\sqrt{3} - 1$$

(4) 0

 $\lim_{x\to a} f(x)$ 의 값이 존재하려면 $\lim_{x\to a} f(x) = \lim_{x\to a} f(x)$ 이어야 하므로

-3a-4=2a+1 : a=-1

03

함수 $f(x) = \begin{cases} -x+a & (x<1) \\ x^2 & (x \ge 1) \end{cases}$ 에 대하여 $\lim_{x \to 1} f(x)$ 의

값이 존재하지 않기 위한 상수 a의 값의 조건은?

① a=2

 \checkmark ② $a\neq 2$

|a| = 2

ⓐ a≥2

⑤ $a \neq 3$

 $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ 이어야 하므로

 $-1+a\neq 1$ $\therefore a\neq 2$

04

함수 $f(x) = \begin{cases} 3-x & (|x| \ge 2) \\ 9-x^2 & (|x| < 2) \end{cases}$ 에 대하여 $\lim_{x \to a} f(x)$ 의

값이 존재하지 않을 때, 상수 a의 값은?

① -3

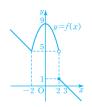
$$(2) -2$$

$$^{(3)}-1$$

4 1

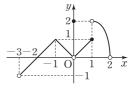
 $\lim_{x\to 2^{-}} f(x) = 5$, $\lim_{x\to 2^{+}} f(x) = 10$ $\lim_{x \to 2^{-}} f(x) \neq \lim_{x \to 2^{+}} f(x)$

즉, $\lim_{x\to 2} f(x)$ 의 값이 존재하지 않으므로 a=2



05

-3 < x < 2에서 정의된 함수 y=f(x)의 그래프가 오른쪽 그 림과 같을 때, 다음 중에서 옳지 않은 것은?



① $\lim_{x \to 0} f(x)$ 의 값이 존재한다.

② $\lim_{x \to \infty} f(x)$ 의 값이 존재한다.

③ $\lim_{x\to 0-} f(x) = \lim_{x\to 0+} f(x) = \lim_{x\to 0} f(x)$ 이다.

④ -2 < a < 1인 실수 a에 대하여 $\lim f(x)$ 의 값이 항 상 존재한다.

 $\sqrt{5}$ x=1에서의 좌극한과 우극한이 모두 존재하므로 $\lim_{x\to 1} f(x)$ 의 값이 존재한다.

⑤ x=1에서의 좌극한과 우극한이 모두 존재하지만 $\lim_{x\to\infty} f(x)=1$, $\lim_{x\to\infty} f(x)=2$ 로 $\lim_{x \to \infty} f(x) \neq \lim_{x \to \infty} f(x)$ 이므로 $\lim_{x \to \infty} f(x)$ 의 값이 존재하지 않는다.

06

 $\lim_{x \to 2+} \frac{|x-2|}{x-2} + \lim_{x \to -2-} \frac{|x+2|}{x+2} 의 값은?$

 $\bigcirc 1 - 2$

(2) -1

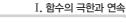
 $\sqrt{3} \ 0$

(4) 1

(5) 2

 $\lim_{x \to 2+} \frac{|x-2|}{x-2} = \lim_{x \to 2+} \frac{x-2}{x-2} = 1$

 $\therefore \lim_{x \to 2+} \frac{|x-2|}{x-2} + \lim_{x \to -2-} \frac{|x+2|}{x+2} = 1 + (-1) = 0$

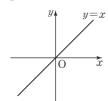


기본을 다지는 유형

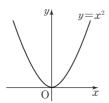
본문 009쪽

001

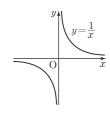
(1)
$$\lim_{x \to \infty} x = \infty$$



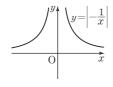
$$(2) \lim_{x \to -\infty} x^2 = \infty$$



$$(3) \lim_{x \to -\infty} \frac{1}{x} = 0$$



$$(4)\lim_{x\to\infty}\left|-\frac{1}{x}\right|=0$$



$$\exists$$
 (1) ∞ (2) ∞ (3) 0 (4) 0

002

(1)
$$\lim_{x \to 2} (x^2 + 3) = 2^2 + 3 = 7$$

(2)
$$\lim_{3} \sqrt{2x+3} = \sqrt{2\times3+3} = \sqrt{9} = 3$$

(3)
$$\lim_{x \to x^3} (x-x^3) = \{-1-(-1)^3\} = 0$$

(4)
$$\lim_{x \to \sqrt{2}} \frac{6}{x^2} = \frac{6}{(\sqrt{2})^2} = 3$$

(1) 7 (2) 3 (3) 0 (4) 3

003

$$\lim_{x \to -3} \frac{4}{x+1} + \lim_{x \to 3} \frac{x+1}{4} = \frac{4}{-3+1} + \frac{3+1}{4}$$
$$= -2 + 1 = -1$$

3

004

$$\lim_{r \to 3} \frac{x^3}{r-2} = \frac{3^3}{3-2} = 27$$

탑 27

005

$$\begin{split} &\lim_{x \to -1} (x^2 + ax + 3) = 2 \text{ MeV} (-1)^2 - a + 3 = 2 \\ &- a = -2 & \therefore a = 2 \\ &\lim_{x \to 3} (bx - 4) = 5 \text{ MeV} 3b - 4 = 5 \\ &3b = 9 & \therefore b = 3 \end{split}$$

a+b=2+3=5

5

006

$$\lim_{x \to a} (x^2 - 2x + 4) = 3$$
에서 $a^2 - 2a + 4 = 3$ $a^2 - 2a + 1 = 0$, $(a - 1)^2 = 0$

$$\therefore a=1$$
 $\lim_{x\to a=1} (x^2-4)=12$ 에서 $b^2-4=12$

$$b^2 = 16$$

따라서
$$a=1, b=4$$
일 때, ab 는 최댓값 4를 갖는다. ③

	E 4
채점 기준	비율
$lue{1}$ a 의 값을 구할 수 있다.	40 %
2 <i>b</i> 의 값을 구할 수 있다.	40 %
3 ab의 최댓값을 구할 수 있다.	20 %

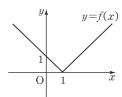
007

함수 y=f(x)의 그래프는 오른쪽 그림 과 같으므로

(1)
$$\lim_{x \to 1^{-}} f(x) = 0$$

(2)
$$\lim_{x \to 0} f(x) = 0$$

(3)
$$\lim_{x \to 1} f(x) = 0$$



(1) 0 (2) 0 (3) 0

[다른 풀이]

(1)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (-x+1) = 0$$

(2)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} (x-1) = 0$$

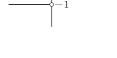
(3)
$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = 0$$
이므로 $\lim_{x \to 1^{-}} f(x) = 0$

800

함수 y = f(x)의 그래프는 오른쪽 그림과 같 으므로

(2)
$$\lim_{x \to 0+} f(x) = 1$$

(3) $\lim_{x \to 0^{-}} f(x) \neq \lim_{x \to 0^{+}} f(x)$ 이므로 $\lim_{x \to \infty} f(x)$ 의 값은 존재하지 않는다.



Ο

y=f(x)

답 (1) -1 (2) 1 (3) 존재하지 않는다.

[다른 풀이]

(1)
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

(2)
$$\lim_{x\to 0+} f(x) = \lim_{x\to 0+} \frac{x}{x} = 1$$

(3) $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$ 이므로 $\lim_{x\to 0} f(x)$ 의 값은 존재하지 않는다.

009

ㄱ. x=a에서의 우극한이 존재하므로 $\lim_{x\to a} f(x)$ 의 값이 존재한다.

ㄴ. x=b에서의 좌극한과 우극한이 일치하므로 $\lim_{x\to a} f(x)$ 의 값이 존재한다.

ㄷ. x=c에서의 좌극한과 우극한이 일치하지 않으므로 $\lim f(x)$ 의 값이 존재하지 않는다.

풍안자 라이트유형

미적분 I

지학사는 좋은 책을 만들기 위해 최선을 다합니다.

완벽한 교재를 위한 노력

- •도서 오류 신고는 「홈페이지 \rangle 참고서 \rangle 해당 참고서 페이지 \rangle 오류 신고」에 서 하실 수 있습니다.
- 발간 이후에 발견되는 오류는 「홈페이지 〉 참고서 〉 학습 자료실 〉 정오표」에서 알려드립니다.

고객 만족 서비스

•홈페이지에 문의하신 사항에 대한 답변이 등록되면 수신 체크가 되어 있는 경우 문자 메시지가 발송됩니다.

지은이 풍산자수학연구소

개발 총괄 오세중 | 개발 책임 김경수 | 편집 유미현, 문상우, 이다은, 석혜영, 손동국, 배예지, 이도희, 이지은, 김예지, 이승현

영업 마케팅 최규명, 김혁래, 이상헌, 김윤제, 문조윤

마케팅 이혁주, 이상무, 유은영, 김규리, 김윤희

디자인 책임 김의수 | 표지 디자인 류은경, 엄혜임 | 본문 디자인 이창훈

컷 디자인 맥컴 | **조제판** 남양프로세스 | **인쇄 제본** 벽호

발행인 권준구 | **발행처** (주)지학사 (등록번호: 1957.3.18 제 13-11호)

04056 서울시 마포구 신촌로6길 5

발행일 2021년 11월 10일 [초판 1쇄] 2025년 10월 20일 [2판 1쇄]

구입 문의 TEL 02-330-5300 | FAX 02-325-8010

구입 후에는 철회되지 않으며, 잘못된 제품은 구입처에서 교환해 드립니다.

내용 문의 www.jihak.co.kr 전화번호는 홈페이지 〈고객센터 → 담당자 안내〉

이 책에 대한 저작권은 (주)지학사에 있습니다.

(주)지학사의 서면 동의 없이는 이 책의 체재와 내용 중 일부나 전부를 모방 또는 복사, 전재할 수 없습니다.

정가 17,000원

ISBN 978-89-05-05832-6