

풍산^자 반복수학

미적분 I

沙沙沙

풍산자 반복수학

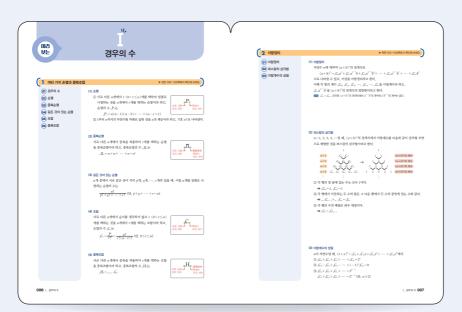
확률과 통계

구성과 특징

정확하고 빠른 풀이를 위한 반복 훈련서

1

한 권으로 기본 개념과 연산 실력 완성

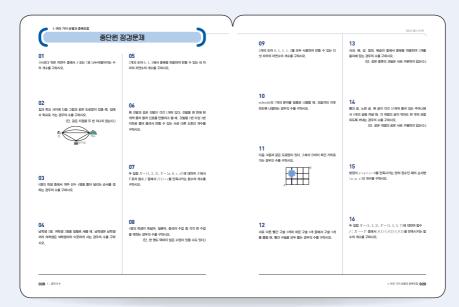

- 개념과 연산을 동시에 학습할 수 있도록 구성하여 기본 실력 완성
- 개념과 연산 유형의 집중 학습으로 수학 실력을 쌓고 자신감을 기르며 실전에서는 문제 풀이 시간 단축
- 2

기본 학습에 적합한 체계적인 주제별 구성

- 소단원별로 학습 이해의 흐름에 맞춰 주제별 개념과 연산 유형을 체계적으로 학습
- 주제별 개념과 연산 학습으로 빈틈없는 기본 실력 향상
- 3

스스로 쉽게 학습할 수 있는 문제 연결 학습법

- 개념과 공식 등을 이용하여 바로 적용하여 풀 수 있도록 구성하여 수학의 기본 개념과 연산을 스스로 완성
- 개념 정리부터 연산 유형까지 풀면서 저절로 원리 터득


미리 보는 대단원

- 대단원별로 중단원과 핵심 주제를 한 눈에 확인
- 중단원별 정리된 핵심 개념으로 개념과 연산 유형의 연계성 파악

주제별 개념 정리와 연산 유형

- 주제별로 중요한 개념 정리와 문제 풀이에 도움이 되는 참고, 보기, 보충 설명 제시
- 빈틈없는 개념과 연산 학습이 이루어지도 록 체계적으로 연산 유형 분류
- 풍쌤 POINT 에서 연산 학습의 비법, 공식 등을 다시 한번 확인

중단원 점검문제

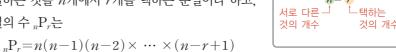
- 중단원별 기본 유형으로 구성하여 중단원 실력을 점검
- 실력을 점검하여 취약한 개념, 연산을 스 스로 확인하고 보충 학습이 가능하도록 구성

即北

I	경우의 수	
	1. 여러 가지 순열과 중복조합	008
	2. 이항정리	030
I	확률	
	1. 확률의 뜻과 활용	042
	2. 조건부확률	058
	통계	
	1. 확률분포	081
	2. 통계적 추정	112

경우의수

- 1. 여러 가지 순열과 중복조합
- **2.** 이항정리


여러 가지 순열과 중복조합

▶ 본문 008~029쪽에서 확인해 보세요.

- **01** 경우의 수
- 02 순열
- **03** 중복순열
- 04 같은 것이 있는 순열
- 05 조합
- 06 중복조합

(1) 순열

① 서로 다른 n개에서 r $(0 < r \le n)$ 개를 택하여 일렬로 나열하는 것을 n개에서 r개를 택하는 순열이라 하고, 순열의 수 $_n$ P $_r$ 는

② 1부터 n까지의 자연수를 차례로 곱한 것을 n의 계승이라 하고, 기호 n!로 나타낸다.

(2) 중복순열

서로 다른 n개에서 중복을 허용하여 r개를 택하는 순열을 중복순열이라 하고, 중복순열의 수 n Π_r 는

$$_{n}\prod_{r}=n\times n\times \cdots \times n=n^{r}$$

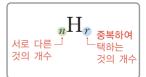
(3) 같은 것이 있는 순열

n개 중에서 서로 같은 것이 각각 p개, q개, \cdots , r개씩 있을 때, 이들 n개를 일렬로 나 열하는 순열의 수는

$$\frac{n!}{p! \times q! \times \cdots \times r!}$$
 (단, $p+q+\cdots+r=n$)

(4) 조합

서로 다른 n개에서 순서를 생각하지 않고 r $(0 < r \le n)$ 개를 택하는 것을 n개에서 r개를 택하는 조합이라 하고, 조합의 수 $_n$ C $_r$ 는


$$_{n}C_{r} = \frac{_{n}P_{r}}{r!} = \frac{n!}{r!(n-r)!}$$
 (단, $0 \le r \le n$)

(5) 중복조합

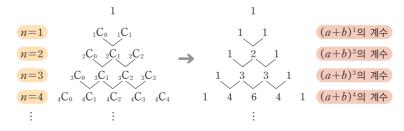
서로 다른 n개에서 중복을 허용하여 r개를 택하는 조합을 중복조합이라 하고, 중복조합의 수 $_n$ H $_r$ 는

$$_{n}H_{r}=_{n+r-1}C_{r}$$

- **01** 이항정리
- 02 파스칼의 삼각형
- 03 이항계수의 성질

(1) 이항정리

자연수 n에 대하여 $(a+b)^n$ 의 전개식은


$$(a+b)^n = {}_n C_0 a^n + {}_n C_1 a^{n-1} b + {}_n C_2 a^{n-2} b^2 + \cdots + {}_n C_r a^{n-r} b^r + \cdots + {}_n C_n b^n$$
으로 나타낼 수 있고, 이것을 이항정리라고 한다.

이때 각 항의 계수 ${}_{n}C_{0}$, ${}_{n}C_{1}$, ${}_{n}C_{2}$, \cdots , ${}_{n}C_{r}$, \cdots , ${}_{n}C_{n}$ 을 이항계수라 하고, ${}_{n}C_{r}a^{n-r}b^{r}$ 을 $(a+b)^{n}$ 의 전개식의 일반항이라고 한다.

참고 ${}_{n}C_{r}={}_{n}C_{n-r}$ 이므로 $(a+b)^{n}$ 의 전개식에서 $a^{n-r}b^{r}$ 의 계수와 $a^{r}b^{n-r}$ 의 계수는 같다.

(2) 파스칼의 삼각형

 $n=1, 2, 3, 4, \cdots$ 일 때, $(a+b)^n$ 의 전개식에서 이항계수를 다음과 같이 삼각형 모양으로 배열한 것을 파스칼의 삼각형이라고 한다.

- ① 각 행의 양 끝에 있는 수는 모두 1이다.
 - $\rightarrow {}_{n}C_{0}=1, {}_{n}C_{n}=1$
- ② 각 행에서 이웃하는 두 수의 합은 그 다음 행에서 두 수의 중앙에 있는 수와 같다.

$$\Rightarrow_{n-1} C_{r-1} +_{n-1} C_r = {}_{n} C_r$$

③ 각 행의 수의 배열은 좌우 대칭이다.

$$\rightarrow {}_{n}C_{r} = {}_{n}C_{n-r}$$

(3) 이항계수의 성질

n이 자연수일 때, $(1+x)^n = {}_{n}C_0 + {}_{n}C_1x + {}_{n}C_2x^2 + \cdots + {}_{n}C_nx^n$ 에서

③
$${}_{n}C_{0}+{}_{n}C_{2}+{}_{n}C_{4}+\cdots=2^{n-1}$$

 ${}_{n}C_{1}+{}_{n}C_{3}+{}_{n}C_{5}+\cdots=2^{n-1}$ (단, $n \ge 2$)

경우의 수

1 합의 법칙

두 사건 A, B가 동시에 일어나지 않을 때, 사건 A와 사건 B가 일어나는 경 우의 수가 각각 m, n이면

(사건 A 또는 사건 B가 일어나는 경우의 수)=m+n

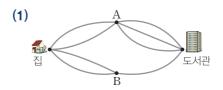
② 곱의 법칙

사건 A가 일어나는 경우의 수가 m이고, 그 각각에 대하여 사건 B가 일어나는 경우의 수가 *n*이면

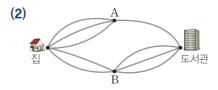
(두 사건 A. B가 동시에 일어나는 경우의 수 $)=m\times n$

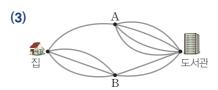
- ▶'또는'. '∼이거나' 등의 표현이 있으면 합의 법칙을 이용한다.
- >'그리고', '~이고' 등의 표현이 있으면 곱의 법칙을 이용한다.

정답과 풀이 002쪽


유형 🚺 경우의 수 – 합의 법칙

() 다음 경우의 수를 구하시오.


- (1) 한 개의 주사위를 던질 때, 소수 또는 4의 배수의 눈 이 나오는 경우의 수
 - **▶ 풀이** 소수의 눈이 나오는 경우는 2, 3, 5의 3가지 4의 배수의 눈이 나오는 경우는 4의 가지 따라서 합의 법칙에 의하여 구하는 경우의 수는 3+__=__
- (2) 서로 다른 두 개의 주사위를 동시에 던질 때, 두 눈의 수의 합이 3 또는 9가 되는 경우의 수
- (3) 1부터 30까지의 자연수가 각각 하나씩 적힌 30장의 카드 중에서 한 장의 카드를 뽑을 때, 5의 배수 또는 8 의 배수가 적힌 카드를 뽑는 경우의 수


유형 02 경우의 수 - 곱의 법칙

○2 집과 도서관 사이에 다음 그림과 같은 도로망이 있을 때, 집에서 도서관으로 가는 경우의 수를 구하시오. (단, 같은 지점을 두 번 지나지 않는다.)

> 풀이 곱의 법칙에 의하여 집에서 도서관으로 가는 경우는 $(집 \rightarrow A \rightarrow \text{도서관}) \Rightarrow 2 \times 3 = (가지)$ $(집 \rightarrow B \rightarrow 도서관) \Rightarrow 2 \times 1 = (가지)$ 따라서 합의 법칙에 의하여 구하는 경우의 수는 6+2=

풍쌤 POINT

동시에 일어나지 않는 두 사건의 경우의 수

➡ 합의 법칙 ➡ 더하기

풍쌤 POINT

동시에 일어나는 두 사건의 경우의 수

➡ 곱의 법칙 ➡ 곱하기

중단원 점검문제

01

100보다 작은 자연수 중에서 3 또는 7로 나누어떨어지는 수의 개수를 구하시오.

02

집과 학교 사이에 다음 그림과 같은 도로망이 있을 때, 집에 서 학교로 가는 경우의 수를 구하시오.

(단, 같은 지점을 두 번 지나지 않는다.)

03

6명의 학생 중에서 계주 선수 4명을 뽑아 달리는 순서를 정하는 경우의 수를 구하시오.

04

남학생 2명, 여학생 3명을 일렬로 세울 때, 남학생은 남학생 끼리 여학생은 여학생끼리 이웃하게 서는 경우의 수를 구하시오.

05

3개의 숫자 0, 1, 2에서 중복을 허용하여 만들 수 있는 네 자리의 자연수의 개수를 구하시오.

06

흰 깃발과 검은 깃발이 각각 1개씩 있다. 깃발을 한 번에 한 개씩 들어 올려 신호를 만들려고 할 때, 깃발을 1번 이상 3번 이하로 들어 올려서 만들 수 있는 서로 다른 신호의 개수를 구하시오.

07

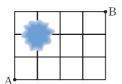
두 집합 $X=\{1,\,2,\,3\},\,Y=\{a,\,b,\,c,\,d\}$ 에 대하여 X에서 Y로의 함수 f 중에서 f(1)=c를 만족시키는 함수의 개수를 구하시오.

08

4명의 학생이 독일어, 일본어, 중국어 수업 중 각각 한 수업을 택하는 경우의 수를 구하시오.

(단, 한 명도 택하지 않은 수업이 있을 수도 있다.)

09


5개의 숫자 0, 1, 1, 1, 2를 모두 사용하여 만들 수 있는 다섯 자리의 자연수의 개수를 구하시오.

10

schools의 7개의 문자를 일렬로 나열할 때, 모음끼리 이웃 하도록 나열하는 경우의 수를 구하시오.

11

다음 그림과 같은 도로망이 있다. A에서 B까지 최단 거리로 가는 경우의 수를 구하시오.

12

서로 다른 빨간 구슬 2개와 파란 구슬 8개 중에서 구슬 5개 를 뽑을 때, 빨간 구슬을 모두 뽑는 경우의 수를 구하시오.

13

사과, 배, 감, 참외, 복숭아 중에서 중복을 허용하여 3개를 봉지에 담는 경우의 수를 구하시오.

(단. 같은 종류의 과일은 서로 구분하지 않는다.)

14

빨간 공, 노란 공, 흰 공이 각각 10개씩 들어 있는 주머니에 서 9개의 공을 꺼낼 때, 각 색깔의 공이 적어도 한 개씩 포함되도록 꺼내는 경우의 수를 구하시오.

(단, 같은 색깔의 공은 서로 구별하지 않는다.)

15

방정식 x+y+z=9를 만족시키는 양의 정수인 해의 순서쌍 (x, y, z)의 개수를 구하시오.

16

두 집합 $X = \{1, 2, 3\}, Y = \{1, 3, 5, 7\}$ 에 대하여 함수 $f: X \longrightarrow Y$ 중에서 $f(1) \le f(2) \le f(3)$ 을 만족시키는 함수의 개수를 구하시오.

풍안**가 반복수학**

미적분 I

지학사는 좋은 책을 만들기 위해 최선을 다합니다.

완벽한 교재를 위한 노력

- •도서 오류 신고는 「홈페이지 〉 참고서 〉 해당 참고서 페이지 〉 오류 신고」에서 하실 수 있습니다.
- 발간 이후에 발견되는 오류는 「홈페이지 〉 참고서 〉 학습 자료실 〉 정오표, 에서 알려드립니다.

고객 만족 서비스

• 홈페이지에 문의하신 사항에 대한 답변이 등록되면 수신 체크가 되어 있는 경우 문자 메시지가 발송됩니다.

지은이 풍산자수학연구소

개발 총괄 오세중 | 개발 책임 김경수 | 편집 유미현, 문상우, 이다은, 석혜영, 손동국, 배예지, 이도희, 이지은, 김예지, 이승현

영업 마케팅 최규명, 김혁래, 이상헌, 김윤제, 문조윤

마케팅 이혁주,이상무, 유은영, 김규리, 김윤희 | 디자인 책임 김의수 표지 디자인 엄혜임, 김수빈 | 본문 디자인 김소민, 김하늘, 김수빈 컷 디자인 맥컴 | 조제판 동국문화 | 인쇄 제본 벽호

발행인 권준구 | 발행처 (주)지학사 (등록번호 : 1957.3.18 제 13-11호) 04056 서울시 마포구 신촌로6길 5

발행일 2018년 11월 10일 [초판 1쇄] 2025년 10월 20일 [4판 1쇄] 구입 문의 TEL 02-330-5300 | FAX 02-325-8010

구입 후에는 철회되지 않으며, 잘못된 제품은 구입처에서 교환해 드립니다. 내용 문의 www.jihak.co.kr 전화번호는 홈페이지 〈고객센터 → 담당자 안내〉

이 책에 대한 저작권은 (주)지학사에 있습니다. (주)지학사의 서면 동의 없이는 이 책의 체재와 내용 중 일부나 전부를 모방 또는 복사, 전재할 수 없습니다.

정가 15,000원

